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ABSTRACT 
 
Current study explains the concept of Algebraic Number Theory and its applications.  Study was 
based on the literature and descriptive in nature. Algebraic number theory is a rich and diverse 
subfield of abstract algebra and number theory, applying the concepts of number fields and 
algebraic numbers to number theory to improve upon applications such as prime factorization and 
primarily testing. In this study, researchers begin with an overview of algebraic number fields and 
algebraic numbers and then move into some important results of algebraic number theory, focusing 
on the quadratic, or Gauss reciprocity law. 
 
KEYWORDS: Algebraic number, quadratic, number theory, factorization and Gauss reciprocity law.  
 
 
INTRODUCTION TO ALGEBRAIC NUMBER THEORY 
 
Algebraic number theory is a rich and diverse subfield of abstract algebra and number theory, 
applying the concepts of number fields and algebraic numbers to number theory to improve upon 
applications such as prime factorization and primality testing. In this study, we will begin with an 
overview of algebraic number fields and algebraic numbers. We will then move into some important 
results of algebraic number theory, focusing on the quadratic, or Gauss reciprocity law. 
 
In this research, we will cover the basics of what is called algebraic number theory. Just as number 
theory is often described as the study of the integers, algebraic number theory may be loosely 

described as the study of certain subrings of fields K with ; these rings, known as 
"rings of integers", tend to act as natural generalizations of the integers. However, although 
algebraic number theory has evolved into a subject in its own right, we begin by emphasizing that 
the subject evolved naturally as a systematic method of treating certain classical questions about the 
integers themselves. 
 
Much of our endeavour in the theoretical study of computation is aimed towards either finding an 
efficient algorithm for a problem or gauging the hairiness of a problem. And in meeting both these 
goals mathematical insights and ingenuities are constant companions. In particular, two branches of 
mathematics - combinatory, and algebra and number theory, have found extensive applications in 
theoretical computer science. In this thesis, our focus is on problems belonging to the latter branch. 
 
For the past few decades there has been a growing interest among computer scientists and 
mathematicians, in the field of computational number theory and algebra. Computational number 
theory is the branch of computer science that involves finding efficient algorithms for algebraic and 
number theoretic problems. Since its inception in the early 1960s, this field has continued to grow 
with ever- rising interest among researchers from diverse disciplines that resulted in a fruitful union 
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of different areas in mathematics and computer science, especially algebra, number theory and 
computational complexity theory. 
 
Factoring large integers, checking if an integer is prime, factoring polynomials, multiplying large 
integers and matrices, and solving polynomial equations are a few among a plethora of problems 
that have made this area so rich and fascinating. Unlike numerical analysis, here we are interested in 
exact solutions to problems instead of approximate solutions. Owing to the fundamental nature of 
the problems involved, this is a subject of intense theoretical pursuit. And the tools and techniques 
developed to solve these problems have provided researchers with deep mathematical insights. But 
interest in them has escalated in recent time because of their important applications in key areas 
like cryptography, coding theory and complexity theory. 

The subject of algebraic number theory, taught today with algebraic number fields as the 
central objects and with unique factorization recovered through the theory of ideals, has been built 
and rebuilt since the early nineteenth century in terms of different objects, and according to 
different methodologies. We review the nature of these alternative approaches here, and in the 
process will encounter the major questions that we will be concerned with in this thesis. 
In early work, such as P.G.L. Dirichlet's (1805 - 1859) studies on what we today call units in the rings 
of integers of number fields, the notion was not that one was studying a collection called a "number 
field" but that one was simply studying the rational functions in a given algebraic number, i.e. 
expressions of the form 

 
Where the coefficients ci and dj were rational numbers, and where a was some fixed algebraic 
number, i.e. the root of a polynomial with rational coefficients. 
 

 
 
Even after R. Dedekind (1831 - 1916) introduced the term "Zahlkorper" ("number field" in English) in 
1871, some, for example K. Hensel (1861 - 1941), persisted for at least a little while longer in 
thinking in the way that Dirichlet had, i.e. simply in terms of rational functions of an algebraic 
number. In this, Hensel was probably influenced by his teacher L. Kronecker (1823 - 1891), who did 
not believe that mathematics could legitimately deal with infinite completed 
totalities like Zahlkdrper. For a time, Hensel teetered between the less popular framework of his 
doctoral advisor Kronecker, and the more popular Dedekindian viewpoint, for example opening a 
research of 1894 with, let x be a root of an arbitrary irreducible equation of nth degree with integral 
coefficients. 

 

All rational functions of x with integral coefficients then form a closed domain  of algebraic 
numbers, a Gattungsbereich in Kroneckerian, a field in Dedekindian nomenclature. Hensel eventually 
came to use Dedekind's notion of Zahlkdrper himself (e.g. (Hensel 1904a, p. 66)), perhaps because it 
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was expedient to use the same language that a majority of his intended audience wanted to use, or 
perhaps because he was not as philosophically strict as Kronecker. 
 
Among Hensel's published papers, only seven mentions the terms Gattung or Gattungsbereich in the 
title; the first of these was published in 1889, and the last in 1897, while overall, Hense Fs 
publications run from 1884 to 1937. At least Kronecker's terminology, if not his conception of things, 
was still recalled by E. Hecke (1887-1947) ' as late as 1923, but gradually awareness of Kronecker's 
framework seems to have faded from popular discourse. 
 
As for the means by which to recover unique factorization, there is a great deal more variation. For a 
basic pedigree of nineteenth century methods, we can begin by naming those of Dedekind, 
Kronecker, Hensel, and E.E. Kummer (1810- 1893), and we will say later how these methods relate to 
one another. There was also the approach of E.I. Zolotarev (1847 - 1878), who achieved a complete 
generalization of Rummer's theory to general number fields; using ideas almost identical with those 
Hensel would later publish. His treatise (Zolotarev 1880) was published posthumously and through 
an unfortunate reception never became widely known. There is a method by E. Selling, and there 
may be more still. 
 

The basic problem, in today's language, is that in a number field such as , the 
ring of integers may fail to have unique factorization. Following Dedekind, we define the ring of 

integers  in E to be the ring of all numbers  whose minimal polynomial (defined to 

be monic) over  has all integral coefficients. For this particular field  it is equal to 

the set of all  –linear combinations over the basis . 

Irreducibility of a non-unit  means that in any factorization  of  , at least 

one of the factors  ,  must be a unit. Each of the numbers  and 

 is integral in E (since their minimal polynomials  are 

 , and ), and it can be shown easily (by considering norms) that each is irreducible 

in  , so that in 

 

We have a failure of unique factorization: the number 6 can be factored into irreducibles in  in 
two distinct ways. Starting not with a quadratic field such as we have considered in this example, but 

with cyclotomic fields ,  a primitive  root of unity,  a positive rational prime, 
Kummer invented a way to "save" unique factorization, which he presented in detail in a research of 
1847. The language of "saving" unique factorization is taken from a letter of 28 April 1847 from 
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Kummer to Liouville, 12 and it is figurative; we must take a moment to understand properly what 
was actually done by each of Kummer, Dedekind, Kronecker, and Hensel. 
 
What each of these mathematicians did, in his own way, was to provide a correlate, of some kind, 
for each integer in a number field, (i.e. to define a mapping from the integers of a number field to 
some other domain of objects) in such a way that for the entire system of these correlated objects 
there was indeed a kind of unique factorization, and such that an algebraic integer a would divide 

another,  , if and only if the correlate of  "divided" the correlate of . In this way all 
questions of divisibility in the ring of integers of a number field could be decided on the grounds of 
divisibility in a separate domain of correlated objects, where unique factorization did hold. Kummer 
initially called these correlated objects "ideal complex numbers", and later "ideal divisors". In 
subsequent work of Dedekind, Kronecker, and Hensel, this name curiously would be split in half, 
Dedekind referring to his objects as "ideals", while Kronecker and Hensel would call their objects 
"divisors". 
 
In general, the correlated domain contained many more objects than just those that corresponded 
to algebraic integers. For one thing, in general the correspondence would be extended so that not 
just algebraic integers but all algebraic numbers (quotients of integers) would have a correlate; 
namely, an algebraic number would be written as a quotient of two algebraic integers, and then the 

correlate assigned to  would be the quotient of those assigned to  and to  . Beyond this, 
however, there could be still more elements in the correlated domain, which corresponded to no 
algebraic number whatsoever, and this "surplus" represented the failure of unique factorization in a 
very precise sense: there would be a surplus in the domain correlated to a number field E if and only 
if unique factorization failed in E. I stress that this language of correlation is mine, and that individual 
writers held varying conceptions of what they were doing. 
 
As for the pedigree of the methods of these four mathematicians, we receive different advice from 
different corners. H. Hasse (1898 - 1979), for one, would always speak of "the Kronecker-Hensel 
method of divisors". H. Weyl (1885 - 1955), on the other hand, in his book (Weyl 1940) depicts 
Hensel's method as the natural extension of Rummer's method, not Kronecker's. To the present 
author, Weyl's picture seems to be the more accurate, although time has not permitted a proper 
study of Kronecker's basic work on number fields (Kronecker 1882), commonly referred to as "the 
Grundzuge." To be fair, Hensel's work does involve Kronecker's forms, to some extent, but its 
defining characteristic, the use of p-adic numbers, seems to have its roots in Kummer. For the 
present discussion we will not try to settle this question, but will be satisfied to simply give a brief 
idea of the nature of each of the four methods. Dedekind's method seems to be the one that has 
remained the most well-known to this day, probably because it is the one taught in most graduate 
courses in algebraic number theory. This at least seems the proximate cause, whereas the distal 
cause must be "Hilbert's reigning influence" (as Hasse would put it) and his use of Dedekind's theory 
of ideals in his Zahlbericht (Hilbert 1897), which, according to Lemmermeyer and Schappacher, "was 
the principal textbook on algebraic number theory for a period of at least thirty years after its 
appearance," and "has served as a model for many standard textbooks on algebraic number theory 
through the present day". Or consider Corry, who writes that, Since Hilbert basically adopted 
Dedekind's approach as the leading one, and since the Zahlbericht became the standard reference 
text for mathematicians working in algebraic number theory, the publication of this survey turned 
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out to be a decisive factor for the consequent dominance of Dedekind's perspective over that of 
Kronecker within the discipline. 
Weyl too expressed similar sentiments in 1944 (ibid., p. 148), as have many others. 18 Considering 
this eventual outcome, it is surprising to learn that Dedekind complained in an 1876 letter to R. 
Lipschitz (1832-1903) that he had given up hope that his theoretical framework would in his time 
interest anyone but himself (Edwards, Neumann, and Purkert 1982, p. 52). 

The ideal at any rate, correlated to an algebraic number  is denoted  and is simply the set of 
all multiples of  with algebraic integers in the field in question. In general, ideals may be 
generated as the set of all linear combinations over any finite set of algebraic numbers

, with the coefficients again being algebraic integers, and with such an ideal 

denoted  . Only those ideals that can be generated by a single number are 
called principal. These principal ideals are the ones correlated to actual algebraic numbers; the 
others are the "surplus" which represents the failure of unique factorization. 
 

Dedekind defines the product of two ideals I and J to be the set of all finite sums  with 

the in I and the  in J. With respect to this notion of multiplication, Dedekind defines prime 
ideals to be those that are divisible only by themselves and by the ideal (1), i.e. the entire ring of 
integers. He shows that ideals have unique factorization into prime ideals. 
 
Meanwhile, from the sketchy image of Kronecker's theory that can be gleaned from a cursory 
inspection of his Grundziige, together with hints from Weyl 1940, and especially Edwards's study 
(Edwards 1990), we may say a few things about Kronecker's theory of divisors. 
Kronecker's approach is perhaps best understood by putting the failure of unique factorization in 
rings of algebraic integers into a different light. It can be expressed instead as the existence of pairs 

of integers  for which there is no greatest common divisor (CCD) in  . This is 
equivalent to the failure of unique factorization, and it is in fact on the subject of greatest common 
divisors that Kronecker opens the second part of the Gmndzuge (Kronecker 1882, p. 45), in the 
section immediately before the one in which he introduces divisors (ibid., p. 48). 

Given algebraic numbers  whereas Dedekind would form the ideal  

 generated by these numbers, Kronecker instead forms a polynomial, or 

form, having the  as its coefficients, namely, the linear form 

 

Where  are indeterminate. Immediately, the form f does appear to be in a 

certain sense equivalent to Dedekind's ideal I; if you allowed the indeterminate  to run over the 

ring of integers  then the set of values that the form f would take on would be precisely I. This 
already sounds like just the sort of alternative approach which we would expect Kronecker to prefer: 
instead of speaking of a completed infinite totality like I, we simply speak of a finite, symbolically 
representable form which in some way contains the same data. 
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An algebraic number field is a finite extension of  an algebraic number is an element of an 
algebraic number field. Algebraic number theory studies the arithmetic of algebraic number fields — 
the ring of integers in the number field, the ideals in the ring of integers, the units, the extent to 
which the ring of integers fails to behave unique factorization, and so on. One important tool for this 
is "localization", in which we complete the number field relative to a metric attached to a prime 
ideal of the number field. The completed field is called a local field — its arithmetic is much simpler 
than that of the number field, and sometimes we can answer questions by first solving them locally, 
that is, in the local fields. 
 
An abelian extension of a field is a Galois extension of the field with abelian Galois group. Global 
class field theory classifies the abelian extensions of a number field K in terms of the arithmetic of K; 
local class field theory does the same for local fields. This course is concerned with algebraic number 
theory. Its sequel is on class field theory. I now give a quick sketch of what the course will cover. The 
fundamental theorem of arithmetic says that integers can be uniquely factored into products of 

prime powers: an  in  can be written in the form, 

  prime number,  and this 
factorization is essentially unique. Consider more generally an integral domain A. An element 

 is said to be a unit if it has an inverse in A: I write  for the multiplicative group of 
units in A. An element p of A is said to prime if it is neither zero nor a unit, 

 
If A is a principal ideal domain, then every nonzero nonunit element a of A can be written in the 

form,  prime element,  and the factorization is unique up to 

order and replacing each  with an associate, i.e., with its product with a unit. Our first task will 
be to discover to what extent unique factorization holds, or fails to hold, in number fields. Three 
problems present themselves. First, factorization in a field only makes sense with respect to a 

subring, and so we must define the "ring of integers"  in our number field K. Secondly, since 
unique factorization will in general fail, we shall need to find a way of measuring by how much it 
fails. 
 
Finally, since factorization is only considered up to units, in order to fully understand the arithmetic 

of K, we need to understand the structure of the group of units UK in  resolving these three 
problems will occupy the first five sections of the course. 
 
OBJECTIVES: Current study explains the concept of Algebraic Number Theory and its applications.   
 
APPLICATIONS OF ALGEBRAIC NUMBER THEORY 
 
The following examples illustrate some of the power, depth and importance of algebraic number 
theory. 
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1. Integer factorization using the number field sieve. The number field sieve is the asymptotically 
fastest known algorithm for factoring general large integers (that don't have too special of a 
form). On December 12, 2009, the number field sieve was used to factor the RSA-768 
challenge, which is a 232-digit number that is a product of two primes: 

 
This record integer factorization cracked a certain 768-bit public key cryptosystem, thus establishing 
a lower bound on one's choice of key size: 

 
2. Primality testing: Agrawal and his students Saxena and Kayal from India found in 2002 the first 
ever deterministic polynomial-time (in the number of digits) primality test. There methods involve 

arithmetic in quotients of , which are best understood in the context of algebraic 
number theory. 
 
3. Deeper point of view on questions in number theory: 
 

4. Pell's Equation  can be reinterpreted in terms of units in real quadratic fields, 
which leads to a study of unit groups of number fields. 
 
5. Integer factorization leads to factorization of nonzero ideals in rings of integers of number fields. 

6. The Riemann hypothesis about the zeros of  generalizes to zeta functions of number fields. 
 
7. Reinterpreting Gauss's quadratic reciprocity law in terms of the arithmetic of cyclotomic fields 

 leads to class field theory, which in turn leads to the Langlands program. 
 

8. Wiles's proof of Format's Last Theorem, i.e., that the equation  has no solutions 

with x. y.z.n all positive integers and , uses methods from algebraic number theory 
extensively, in addition to many other deep techniques. Attempts to prove Fermat's Last Theorem 
long ago were hugely influential in the development of algebraic number theory by Dedekind, 
Hilbert, Kummer, Kronecker, and others. 
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9. Arithmetic geometry: This is a huge field that studies solutions to polynomial equations that he in 
arithmetically interesting rings, such as the integers or number fields. A famous major triumph of 
arithmetic geometry is Faltings's proof of MordelPs Conjecture. 
 
Theorem (Faltings). Let X be a non-singular plane algebraic curve over a number field K. Assume that 

the manifold X  of complex solutions to X has genus at least 2 (i.e., X  is topologically a donut 
with two holes). Then the set X (K) of points on X with coordinates in K is finite. 
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